Kinematically distinct cores: the unexplained smoking guns of hierarchical formation

Kinematic decoupling in early-type galaxies

maps from ATLAS^{3D} survey (Krajnović et al. 2011)

- velocity maps of early-type galaxies show ample evidence for complex kinematic structures
- what is their origin?
- how can they survive? (are they stable?)
- are these structures "decoupled" from the rest of the body?

What is a KDC?

Davor Krajno

- kinematically distinct core (KDC)
- kinematically decoupled component/core (KDC)
- kinematically peculiar core (KPC)
- dynamically decoupled cores?
- Core: central region (nucleus)
- Distinct/peculiar maybe decoupled
- Definition:
 - change in the orientation of the velocity structure for more than 30 degrees (or we call it a "kinematic twist")
 - velocity drops (nearly) to ZERO in the transition region

Why are KDCs special?

- They look cool (great PR)
- They are rare
 - found in early-type galaxies
 - actually, only <11% of early-type galaxies
- Kinematics of majority of galaxies is easy to predict based on their shapes (Cappellari et al. 2013)
- kinematics of KDCs is not easy to model

Isotropic model Bulge mass=10

Isotropic model Bulge mass=1

Kinematics of early-type galaxies

Krajnović et al. (2011)

Majority of ETGs have simple disc-like kinematics

Specific angular momentum - λ_R

- Kinematic classification using *specific angular momentum*, λ_{R} (Emsellem et al. 2007)
- Fast rotators: Regular, disk-like velocity maps
- Slow rotators: Non-regular velocity maps, KDCs, no net rotation

$$\lambda_R = \frac{\langle R \cdot |V| \rangle}{\langle R \sqrt{V^2 + \sigma^2} \rangle}$$

Specific angular momentum - λ_R

- Kinematic classification using *specific angular* momentum, λ_R (Emsellem et al. 2007)
- Fast rotators: Regular, disk-like velocity maps
- Slow rotators: Non-regular velocity maps, KDCs, no net rotation

$$\lambda_R = \frac{\langle R \cdot |V| \rangle}{\langle R \sqrt{V^2 + \sigma^2} \rangle}$$

λ_R vs Hubble classes

0.3

0.2

0.4

0.5

0.6

Nuclear surface brightness profiles

- core galaxies are typically Slow Rotators, but not all
- most massive (lowest angular momentum) Slow Rotators have cores

Where do KDCs live?

λ_R vs kinematic strucutre

Macquarie University

KDCs on the mass - size

- massive slow rotators with cores often have KDCs
- core-less galaxies also contain KDCs
- KDC galaxies span range of masses

KDCs and the environment

Krajnović et al. (2011)

- KDC galaxies found in dense environments
- follow the trend of massive slow rotators

A historic prospective

(Ancient) History: 1980s

Kormendy (1984)

- Looking for evidence of past mergers (collapse vs merger): how should a remnant look like?
- it could have a core: 'core-within-a-core'
 - small size, high surface brightness
 - rotation (more that the body), smaller dispersion
 - bluer colours
 - photometric twist
- Photometric searches:
 - King, Lauer, Jedrzejewski, Schechter, Kormendy...
 - Efstathiou, Elis, Carter (1982) NGC5813

(Ancient) history: 1980s

- Kinematic searches:
 - Efstathiou, Elis, Carter (1982,1984) NGC5813
 - Jedrzejewski & Schecter 1988 NGC3608, NGC4494, NGC7626
 - Bender 1988 NGC4365, NGC4406, NGC4494, and NGC5322
 - Franx & Illingworth 1988 IC1459
- there are also other type of decouplings
 - gas rotates different from stars (Schweizer 1982, Bertola et al. 1988...)
- what about the properties of the stellar populations (colour, age & metallicity)?

Stellar populations (1990)

- there are some trends in metellicities for galaxies with KDCs (e.g. Bender & Surma 1992, Carollo & Danziger 1994)
 - metal rich cores (more than large scales) -> not good for 'corewithin-a-core'
 - but other Es have similar trends (Gorgas et al. 1990....)
- no trends in colours from ground based imaging (Franx et al. 1990)
- no trends in colours from HST imaging (Carollo et al. 1997)

KDCs and light distributions

 no general trends in surface brightness profiles (e.g.Nuker nuclear slope; Forbes et al. 1995; Carollo et al. 1996)

- indication that some KDCs have discy isophotes (Mehlert et al. 1998) but not special w.r.t ETG
- KDC host galaxies are not different from other early-type galaxies

Carollo et al. 1996

Interpretations: 1990

- KDC seemed to be often present in luminous (massive) Es (~1/3, Bender 1990)
- interpreted as evidence of mergers
 (Kormendy 1984; Franx & Illingworth 1988;
 Balcells & Quinn 1990; Hernquist & Barns
 1991; Bender & Surma 1992....)
- 1) core-within-a-core (Kormendy 1984)
 - KDC rotation from the orbital spin (Franx & Illingworth 1988)
- 2) accretion of gas or gas rich satellite (Bertola et al. 1988; Franx & Illingworth 1988)
- 3) major mergers of gas rich spirals (Bender & Surma 1992)
- 4) early (hierarchical) formation when galaxies are clumpy and gas rich (Bender & Surma 1992)

KDC demographics

Different types of kinematic decoupling

(classic) KDC

counter-rotating core
CRC

2M (2 maxima)

 2σ -double σ peak

- a number of observed types of 'decoupling'
- likely different internal structure
- not necessary of the same origin
- found in different types of ETGs

Large KDCs in early-types

- Large (> 1 kpc in size)
- old, no special difference in stellar populations
- Iuminous & massive Slow Rotators

Small KDCs

- Small (< 1 kpc in size)
- need high resolution IFUs (e.g. OASIS; McDermid et al. 2006)
- young
- typical (relatively massive) ETGs: fast rotators

(Small) KDCs in dwarfs

• KDCs in dwarf Ellipticals: Toloba et al. (2014), Geha et al. (2005), Koleva et al. (2011), Chilingarian et al. (2009), Rys et al. (2013), Guerou et al. (2015)

Rys et al. (2013), ID0918

2σ - Counter-rotation

- Specific signature in the velocity dispersion 2 peaks along the major axis
- 4% of ETG —> until now only in flat(-ish) (edge-on) Fast Rotators

2σ - Counter-rotation

- 2σ peaks explained as counterrotating disc (e.g. NGC4550; Rubin et al. 1992, Rix et al. 1992)
- or counter-rotating fast rotating structures (Cappellari et al. 2007)
- origin:
 - merger of two discs with opposite orbital spins (e.g. Bois et al. 2011)
 - capture of gas (e.g. Coccato et al. 2011)
 - intersection of cold streams (Algorry et al. 2014)

2σ - Counter-rotation

• 2σ peaks explained as counterrotating disc (e.g. NGC4550;

Rubin et al.

 or counter-ro structures (C

origin:

merger of opposite of Bois et al.

capture of al. 2011)

• intersection of cold streams (Algorry et al. 2014)

Algorry et al. (2014

Stellar populations

Stellar populations

NGC4365; Davies et al. (2001)

- stars in KDCs formed at early time (>10Gyr)
- no significant (if any)
 difference between the
 KDCs and the rest of
 galaxies
- no clear evidence for recent merging
- found in (almost) all large scale KDCs (Franx et al. 1988, Davies et al. 2001, Kuntschner et al. 2006)

Davor Krajnović

Macquarie University

Stellar populations of large KDC galaxies

- SAURON sample (representative, not complete - there could be counter-examples)
- (all) KDCs are old
- metellicity increases towards the centre
- no age gradient (almost)

February 13 2015

Davor Krajnović

Macquarie University

Stellar populations of large KDC galaxies

- Stellar populations are similar to other ETG of the same mass
 - Age, metallicity, abundance
- both for apertures and for gradients
- confirms other studies, but there are a some exceptions

Stellar populations of small KDCs

- ETGs with young course often harbour small KDCs
- high spatial resolution necessary
- recent accretion of gas or (minor) dissipative mergers
- KDCs in dEs show same trend: young and metal rich (Toloba et al. 2014)

Dissipative mergers/accretion at work

McDermid et al. (2006)

- Small KDCs in Fast Rotatorsyoung
- Large KDCs in SLOW rotators old
- Two different formation scenarios for KDC in FR and SR (dwarfs?)
- small KDC formation scenario:
 - KDC grows via SF (inside)
 - evidence of accretion or minor wet merger

Fast Rotator

Stability of KDC

Stability of KDCs

- How stable are KDCs?
- Large scale KDCs (in Slow Rotators) made of old stars —> stable over long periods (e.g. Davies et al. 2001)
- Slow Rotators often show signatures of triaxiality (photometric twists, misalignments between photometry and kinematics)
- Slow Rotators (and KDCs!) have complex internal orbital structure
- what about small KDCs, found in Fast Rotators?
 - in axisymmetric bodies
 - almost always (near to) counter-rotating (McDermid et al. 2006)

What happens to small KDCs?

McDermid et al. (2006)

KDC (counter-rotating)

co-rotating

luminosityweighted contribution of the two components

- apparent disappearance of the evolving young counter-rotating population in a larger old body (they are still there!)
- no dynamical reason for the KDC to disappear just fading population of small total mass

Is kinematic decoupling real?

- is KDC apparent or intrinsic?
- are the two components physically separated or cospatial?
- KDC as a result of luminosity averaging of subcomponents
- influence on the formation scenarios

Orbital structure of KDCs

Orbital structure

- simple orbits in simple potentials
- axisymmetric: 1 major orbital family: short axis tubes (of opposite angular momtum)
- triaxial: 3 major orbital families: short and long axis tubes and box orbits (no angular momentum) (e.g. de Zeeuw 1984)

Simulating KDC

Hoffman et al. (2010)

- Not easy to make KDCs in simulations; high resolutions needed (e.g. Bois et al. 2010, Hoffmann et al. 2010)
- importance of dissipative mergers (KDCs in 1:1 mergers with 15-20% gas)
- dry mergers —> box orbits dominate cores
- wet mergers —> increasing importance of short axis tubes

Simulating KDC - orbital structure

- slow rotators produced in major mergers often have KDC (Bois et al. 2011)
- 2σ structures (counterrotating discs) found in both slow and fast rotators
- slow rotators not realistic: too flat

Orbital momentum shapes kinematic structure

Bois et al. (2010)

Bois et al. (2010)

- two types of KDCs produced
 - 1) counter-rotating stellar systems no real decoupling: KDCs is a luminosityweighted average of overlapping orbits
 - 2) KDC made of decoupled components where orbital spins are in opposite directions

KDCs in Cosmo simulations

- not easy to produce; 1st KDC from cosmo simulations: Naab et al. (2007)
- found in slow rotators (as CRC)
- dissipative major (1:1) mergers (that create slow rotators)

Jesseit et al. (2007)

Structure of KDCs (simulations)

all particles complex orbital

- structure
- rotation dominated by short-axis tubes (prograde and retrograde)
- overall kinematics by box orbits (no net angular momentum)
- triaxial body
- KDC is an 'orbital composite'

Structure of KDCs (simulations)

Röttgers et al. (2014); Naab et al. (2014)

- complex orbital structure
- rotation dominated by short-axis tubes (prograde and retrograde)
- overall kinematics by box orbits (no net angular momentum)
- triaxial body
- KDC is an 'orbital composite'

Structure of KDCs (simulations)

 complex orbital structure

- rotation dominated by short-axis tubes (prograde and retrograde)
- overall kinematics by box orbits (no net angular momentum)
- triaxial body
- KDC is an 'orbital composite'

Dynamical modelling

Orbit based models

- orbit superposition dynamical models a la Schwarzschild (1979, 1982, 1993)
- Steps:
 - 1) parameterise light —> gravitational potential
 - 2) build an orbit library (assuming axisymmetry)
 - 3) chose from the orbit library those set of orbits that will reproduce the observed MUSE kinematics (and light distribution)
- axisymmetric (Rix et al. 1997; van den Marel et al. 1998; Cretton et al. 1998; Verolme et al. 2002; Cappellari et al. 2002,2006,2007; Krajnović et al. 2006,2009) and triaxial versions (van den Bosch et al. 2008, 2009a,b...) of 'Leiden' code

NGC4365 triaxial model

- triaxial Schwarzschild models (van den Bosch et al. 2009)
- include short-axis tubes, long-axis tubed and box orbits

NGC4365 triaxial model

A puzzling case of NGC5813

Unusual KDC

- the first discovered KDC (Efstathiou et al. 1982)
- 'core-within-a-core' galaxy
- inspiration for cannibalism scenario, but disproved with stellar pops
- photometric twist
- something is fishy with this galaxy
 - no rotation at large scales
 - sigma drop (within KDC)
 - a disk?

NGC5813 MUSE kinematics

 Observed with MUSE during commissioning

- 2 peaks along the major axis on velocity dispersion map
- is NGC5813 made of two counter-rotating discs?
- A slow rotator made of discs?

Dynamical model

- Axisymmetric Schwarzschild dynamical model exploring the orbital structure
- one type of orbits, but two families: short axis tubes with opposite spins
- 1) both prograde and retrograde orbits EVERYWHERE
 - within KDC one dominant (70%-30%)
 - outside equal (no rotation!)
- 2) neither component has very strong angular momentum
 - consistent with the 2 component LOSVD results

P

Consequences

- 1. Neither of the components is a disc!
- 2. NGC5813 is not a typical 2σ peak galaxy
- 3. KDC is not a separate (spatially localised) component, but part of an extended (galaxy wide) structure
- 4. Its origin could still be:
 - similar to a 2σ peak galaxy: accretion of gas/gas rich dwarf/two cooling flows building the galaxy
 - subsequent evolution (puffing up/destruction of the discs, possibly as a natural result of the group environment)
 - major merger (of two fast rotators) in the early universe

Outlook

- various kinds of (apparent) kinematic decoupling present, relatively common (~25% of cases); some not visible
- classic KDCs: in ~7-10 % of ETGs
- classic KDC:
 - large scale, in slow rotators
 - old, same stellar pops everywhere
 - dynamical stable (as seen by dynamical models and old stellar pops)
 - no decoupling: orbital-composite (at least for 2 of them)
- need to analyse more cases

Creation of KDCs

- a) early 1:1 merger (wet) with spins opposite to orbit
- b) dry merger (of galaxies with old stars) possible (but current simulation make them too flat!)
- c) early accretion of gas from a companion (like 2σ galaxies) or two cold flows
- a),b),c) + need to take into account subsequent evolution of minor mergers (as KDCs are in massive galaxies in dense environments)