

3-7 September 2018, Favignana Island, Italy Birth, life and fate of massive galaxies and their central beating heart

Dynamics of massive (local) galaxies

Davor Krajnović Favignana, 04 Sept 2018

Age old astro questions?

- what is the mass (or mass density) of the galaxy?
- what is the (intrinsic)shape of the galaxy?
- stellar dynamical modelling as an extension of observations
- key observable stellar motions
- what can we learn about the mass assembly and the formation of (massive) galaxies?

- Crucial ingredients:
 - high quality imaging
 - kinematical mapping
 - sophisticated models

There are two types of ETGs

- dynamical studies of massive galaxies start with stellar rotation curves
 - from mid 70s (e.g. Bertola & Cappaccioli 1975, Illingworth 1977, Davies et al. 1983.....)
- shapes of massive galaxies are not related to their rotation
- ellipticals (as a class) are not oblate systems with isotropic velocity ellipsoids
 - high V/σ: fainter, disky ellipticals --> isotropic (?)
 - low V/σ: bright, boxy elliptical --> anisotropic (?)
- Two problems:
 - limited data (no IFU)
 - projection effects

Misleading shapes

Stellar kinematics with IFUs

Krajnović et al. 2008, 2011 (top image from Cappellari 2016, ARAA)

Dynamical modelling to the rescue!

$$(V/\sigma)_e^2 = \frac{\langle V^2 \rangle}{\langle \sigma^2 \rangle}$$
 Use new formalism for IFU kinematics (Binney 2005)

Anisotropy trend based on dynamical models and IFU kinematics.

- regular and non-regular rotation is the crucial distinction between galaxies
- regular rotators span a large range of anisotropies
 - they are not isotropic, but fall close to the isotropic line due to projections!

A physical way of classifying galaxies

- difference in kinematics is quantifiable by the specific stellar angular momentum
- Fast rotators high angular momentum and regular rotation
- Slow rotators low angular momentum and nonregular rotation
- strong dependance on mass (and environment?)

Regular rotator

Emsellem et al. 2007, 2011 (image from Cappellari 2016, ARAA)

See also Graham et al. (2018) for MANGA version with >2500 galaxies

The importance of shape - orbital structure

- · simple potentials have simple orbits, e.g. point mass: ellipses
- axisymmetric: 1 major orbital family: short axis tubes (SAT)
- prolate: 1 major orbital family: long axis tubes (LAT)
- triaxial: 3 major orbital families: short (SAT) and long axis tubes (ILAT, OLAT) and box orbits (no angular momentum) (e.g. de Zeeuw 1984)

Kinematic misalignment

- regular rotation:

 aligned —> nearly
 axisymmetric
 systems (+ bars or interacting)
- non-regular rotation:

 (also) misaligned —>
 triaxial systems

- misalignment between photometry and kinematics is only possible in triaxial systems
- majority of galaxies are consistent with being oblate and axisymmetric

Intrinsic shape

Ene et al. (2018) - MASSIVE Weijmans et al. (2014) - ATLAS^{3D}

Foster et al. (2017) - SAMI

Li et al. (2018)- MaNGA

- fast rotators are oblate axisymmetric systems
- **slow rotators** are mostly **triaxial**, but can also be **oblate**, and relatively **round**, and there is evidence for a **prolate population**
- more massive galaxies are more likely to be triaxial?
- are massive galaxies prolate?

What is a prolate galaxy?

- prolate and oblate galaxies can be mistaken in projection
- prolate is defined as c=b<a
- bars are ~ prolate
- combination of kinematics and shape can help
 - only for those galaxies that show rotation!

Are there prolate galaxies?

- galaxies consistent with being prolate
 (or exhibiting prolate-like rotation) exist
 (e.g. Schechter & Gunn 1979; Wagner et al. 1988;
 Krajnović et al. 2011; Falcon-Barroso et al. 2017, Tsatsi et al. 2017...)
- more massive more likely to be prolate
- strong effect for > 10¹² M_{SUN}

Dynamics of galaxies

- mass of a galaxy can not be measured, only estimated using dynamical models
- actually, we get a handle on mass to light ratio (M/L) only!
- simple estimate: Virial theorem
- complex models
 - integrating distribution functions (e.g. Dejonghe & Merritt 1992)
 - based on **Jeans equations** (e.g. van der Marel et al. 1994;
 Cappellari 2008)
 - based on integration of orbits
 - averaging observables over an orbit Schwarzschild (1979) method (e.g. Rix et al. 1997, Cappellari et al. 2006, Thomas et al. 2007...)
 - continuously updating the observables made-tomeasure (Syer & Tremaine 1996, de Lorenzi et al. 2007...)
 - good agreements between most common methods(!)
 - JAM (Cappellari et al. 2008) & Schwarzschild models

van den Bosch et al. (2008)

The need for integral-field coverage

- Dimensional argument: the **distribution function is 3D** → need **3D data**
- Little can be recovered of the true galaxy dynamics from single long-slit data

Application of dynamical modelling

- Understanding the internal structure
 of galaxies (Binney 1975; Binney & Mamon 1982; de Zeeuw et al. 1985; Thomas et al. 2004; Krajnović et al. 2005, van de Ven et al. 2008, Yildirim et al. 2017)
- measuring masses of SMBH (i.e M_{BH} σ relation; (e.g.Gebhardt et al. 2003, Gültekin et al. 2009, Rusli et al. 2013; Krajnović et al. 2018b; Kormendy & Ho 2013)
- IMF and/or DM fraction (e.g. Cappellari et al. 2013, Posacki et al. 2015; Poci et al. 2017)
- moving from light to mass, improvement on the scaling relations
- total density profiles of spirals and ETGs (using kinematics of globular clusters or HI)

Cappellari et al. (2013); Posacki et al. (2015)

Davor Krajnović

Galaxies are virialized systems

- once we have good mass estimates....
- MP has no intrinsic scatter: FP tilt & scatter due to stellar population variations
- galaxies follow **virial prediction** (Cappellari et al. 2006, 2013; Bolton et al. 2008; Auger et al. 2010)
- confirmed on large samples (MaNGA, Li et al. 2018)

Linking spirals with ETGs

- extending TFR to ETGs: linking V_c vs σ_e
 - V_c as in spirals: asymptotic velocity
 - V_c in ETGs measured at 4 R_e (SLUGGS, ATLAS^{3D})
 - σ_e ETGs: $\sigma_e = \sqrt{(V^2 + \sigma^2)}$
 - $V_c \sim 1.33 x \sigma_e$ (Serra et al. 2016)
 - linear relations: L ~ V_c, L ~ σ_e
- ETGs fall on the radial acceleration relation (e.g. Lelli et al. 2017)

Birth, life and fate of massive galaxies

Universal density slope?

- it is now possible to trace (some) ETGs to several effective radii (HI, globular clusters, PNe)
- dynamical models imply γ_{tot} ~ **2.2** (e.g. Cappellari et al. 2015, Bellstedt et al. 2018), **steeper** than **isothermal** and **simulations**
- no dependance on mass (Serra et al. 2016, Bellstedt et al. 2018)

Universal density slope?

- it is now possible to trace (some) ETGs to several effective radii (HI, globular clusters, PNe)
- dynamical models imply γ_{tot} ~ **2.2** (e.g. Cappellari et al. 2015, Bellstedt et al. 2018), **steeper** than **isothermal** and **simulations**
- no dependance on mass (Serra et al. 2016, Bellstedt et al. 2018)

Constraining mass assembly processes

- massive galaxies extend from the bulk of galaxy population (ATLAS^{3D} and M3G surveys)
- occupy area predicted for dry major mergers
- galaxies grow by SF, quench through the process of bulge growth (e.g. van Dokkum et al. 2015; Cappellari 2016)
- massive galaxies lack disks
- most massive galaxies (>10¹²M_{SUN}) require dry major mergers

Dynamics of (local) massive galaxies

- complex kinematics
 - non-regular
- complex shapes
 - oblate-triaxial and prolate
- do not have disks
- old stellar pops, no (or little) star formation
- have cores in central light profiles
- located in dense environments
- show multiple evidence for major dissipation-less merging

